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Microwave Absorption by Conductor-Loaded Dielectrics

Perambur S. Neelakanta and Joseph C. Park

Abstract—A theoretical model to predict the microwave absorption
by a conductor-loaded dielectric is developed. The microwave power
transmission coefficient of the test material is derived in terms of the
effective conductivity and permittivity parameters (of the composite
material) as a function of volume fraction of the conductor loading. The
absorption/transmission characteristics of the test material versus volume
fraction of metal loading are described by three distinct regimes having
low-loss, lossy, and metal-like characteristics. Theoretical predictions are
comparable with the measured data pertinent to an iron-plus-dielectric
material.

1. INTRODUCTION

Dielectric materials loaded with particulate, needle-like, or flaky
conducting materials (such as graphite or nickel) find a variety
of applications at microwave frequencies such as radar-absorbing
materials, bioelectromagnetic phantoms, EMI shields, microwave
absorbers for anechoic chambers, etc. The effective electromagnetic
response of such mixture media with metallic inclusions is decided
by: 1) volume fraction, geometrical shape, and conductivity of
the metallic inclusions; and 2) complex permittivity of the host
medium. The other deciding factors are the frequency of operation
and stochastical aspects of random particulate dispersion in the
mixture. (The volume fraction indicated refers to the volume content
of a constituent material expressed as a fraction of the total volume
of the mixture.)

In the static and/or quasistatic regimes. the earliest versions of
conductor-loaded dielectric mixture formulations are due to Maxwell-
Garnett [1] and Rayleigh [2]. These, however, apply to dilute’ con-
centration of the inclusions only. Subsequent studies include those
due to Bruggeman [3], Lal and Parshad [4] Scarisbrick [5], Kusy [6],
and Frame and Tedford [7]—all of which mostly refer to static or
low-frequency applications, and/or apply to low-volume fractions or
contain empirical parameter(s) to match the experimental data.

The electrical resistivity of binary composites at static conditions
has also been modeled via a general effective media approach which
combines the effective media theory (due to Bruggeman [3]) and
percolation concepts—a review of which has been presented by
McLachlan ef al. [8]. In order to extend the conductivity model(s)
of dielectric-conductor mixtures to time-varying excitations, the
classical work of Maxwell-Garnett [1] has been used to depict the
random metal—insulator composite as a polarizable medium in which
the metal inclusions play the role of “atoms” [9]. Relevant studies as
adopted by others as well [10]~[13] have yielded interesting results
(experimental and/or theoretical) pertinent to the dielectric-loaded
mixtures. )

One of the authors developed elsewhere [13] a comprehensive
analytical model based on complex susceptibility concepts to describe
a conductor—dielectric mixture, and deduced its effective dielectric
constant and conductivity parameters. Relevant formulations have
taken into consideration the frequency dependence, the statistical
pature of the mixture (via logarithmic law of mixing), and the
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influence of particulate geometry on dielectric polarization, and,
above all, those analytical expressions are entirely nonempirical.

The present study is based on the above model [13], and deduces
analytical description(s) of the power transmission coefficient of a
dielectric-metal mixture at microwave frequencies. This transmission
is characterized by three distinct regimes of insertion loss offered by
the test sample, namely, dielectric-dominant, conductivity-dominant
(metal-like), and an intermediate lossy range which depends heavily
on the volume fraction of the inclusions. Relevant theoretical con-
siderations and experimental studies are presented in the following
sections.

1. THEORETICAL CONSIDERATIONS
As indicated earlier, expressions for the effective (relative) permit-
tivity (eesr) and conductivity (ces) of a dielectric—metal mixture at
high frequencies have been derived in [13]. They are given by

cer = {e2/[1 4+ (2 — 1)"]}
A{l(o1/weo)’(e2 = 1) P cos (x6/2)]" + 1} (1a)
oot = o1{[weo(ez — 1) /1) " sin (x6/2)}* (1b)

where o1 is the conductivity of the inclusions (in siemens/meter), €3
is the relative permittivity of the host medium, ¢o is the free-space
permittivity equal to (1/367) x 10™° F/m, w = 27 x frequency,
and € is the volume fraction of the inclusions. Further, u depicts an
order parameter of the mixture system, which for spherical particulate
inclusions (with eccentricity e = 0) is deduced in [13] as 1/6 in terms
of the Langevin function.

When 6 — 1, the test material represents a pure conductor
which would offer an attenuation constant (c;) to electromagnetic
propagation through it equal to (1/61) where 6; is the skin depth of
the metal. The specific power absorption (watts/meter® ) by the metal,
namely, (E®¢1), is then proportional to [1 — exp (—2a61)] where E
is the incident electric field intensity (in volts/meter). Over the same
depth (81), electromagnetic power absorption in the mixture with a
volume fraction (#) of the metallic inclusions is (EQO'eH) proportional
to [1 — exp (—2aé1 )] where o refers to the attenuation coefficient of
the mixture. Inasmuch as 016, = 1 and the relative power loss in
a unit volume of the mixture is the ratio [(E%geg )(8)/(E?a1)(1)],
a can be deduced as

a=(o1/2)In{[l — 2(oerf/c1)] "} )

where = = [1 — exp (—2)] = 0.864665 and o, is explicitly given by
(rfp1o1)*/? neper/meters, with 41, being the permeability of metal
inclusions.

Considering a slab of thickness d (meters) of the mixture medium
with a volume fraction (#) of the conducting inclusions, a power
transmission attenuation function F'(¢, ) can be defined and deduced
as follows.

Let T be the power transmission coefficient specified by T' =
Ty ToTs where Ty refers to the transmission factor for the normal
incidence of a plane wave at a medium of relative permittivity €.
That is, T\ = [2v/ecst /(1 + /e )]*. The factor T3 accounts for the
attenuation over the thickness (d) of the medium, and is given by [1—
exp (—ad)]?. Inasmuch as the medium on which the wave is incident
is of finite thickness (d), the overall transmission coefficient could
be influenced by multiple reflections at the air—-composite interfaces.
Nicolson and Ross [14] have deduced the reflection/transmission
coefficient(s) with the inclusion of such multiple reflections. A sirilar
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approach as presented in [15] provides a reflection correct factor T3
equal to [(K — 1)/(K + 1)exp(—vd)|* where K is the ratio of
wave impedances corresponding to free space and the test material.
Explicitly, it is given by K = [1207/(1 + j)R.]. Here, R, is the
surface resistance of the test material equal to («/g.g) €2; further,
v = a+jf, with |a| = |B|.

A transmission attenuation function can now be defined in terms
of T as

F(8,u) = (1-TX) €)

where the factor X = 7, /79 and 71 and 79 are the rearrangement
times of the mixture material at # — 1 and at ¢, respectively. The
rearrangement time 7 refers to the permittivity/conductivity ratio of
the material, and depicts the time involved in the rearrangement of
charges placed in the medium in appearing as surface charges. For
a perfect conductor, 7 — 0, and in a perfect dielectric (insulator),
7 — oo. The rearrangement time is a convenient way to differentiate
between insulators and conductors. Accordingly, the mixture medium
can be classified into three regimes as follows: 1) low-loss region I
with 79 being large, 2) intermediate-lossy region II, and 3) high-
loss region IIT with 75 being small. Pertinent to these three regions,
the corresponding transitional volume fractions can be evaluated
explicitly as detailed later.

Considering region I, microwave propagation through the material
sample can be expecied to have a power transmission coefficient I'z
(normalized with respect to power transmission coefficient, namely,
[(2v/€2)/ (1 + +/€2)]? specified by the pure dielectric host medium)
being close to unity as dictated by the low-loss characteristics of
the medium. This implies that the loss is due to reflection at the
air—composite interface only. As § increases, I'r should decrease as
governed by (3). Likewise, for region III, I'r should tend towards
zero with an increase in & as decided by (3). Hence, the following
formulations are derived:

Tr = (3/4)F(8, u = 1/3) + (1/4)F(6, u = 1/6)

=0.75+ 0.25F(, u = 1/6) for region I (4a)
Tr=(3/4)[1—-F(8,uv=1/3)]+1/4F(0, v =1/6)
=0.25F(,uw=1/6)  for region I (4b)

where F(9, u = 1/3) — 1 for all values of 6.

The intermediate section (region II) covers a narrow range of
volume fraction over which a low-loss to high-loss abrupt transition
prevails. Such a switching behavior is controlled by the stochastical
nature of particulate dispersion in the test material; and the complex
dielectric constant of a metal-insulator mixture exhibits a divergent
behavior or a singularity in the vicinity of a percolation threshold
value (f.) of the metallic volume fraction [9]-[16].

In view of the above discussion, a deterministic law of variation
for region II predicting the transmission coefficient versus the volume
fraction cannot be per se stipulated. However, such a region can
be bounded as constrained by certain limiting values of 6, and, for
any given sample, the transitional values of I'r versus 6 will be
confined to this bounded area. Such specification of conductivity
and/or permittivity of binary mixtures within certain stochastical
bounds is not uncommon [12].

Referring to Fig. 1, this bounded region (region II) is specified
by the corner coordinates A(0, 1), B(2u/2, 1), C(2u/2, 0), and
D(4u/2, 0). The transitional volume fractions corresponding to A,
B, C, and D indicate the critical behavior vis-a-vis the lossy nature
of the test material. Such a behavior is also specified in terms of the
order parameter (u) portraying a transitional characteristic analogous
to dipole polarization (parallel or antiparailel) transitions. The Limit-
switching between low-loss to high-loss characteristics as controlled
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Fig. 1. Power transmission coefficient (I'7) versus volume fraction (6)
of conducting inclusions. Constituents of the test samples: host-medium
(CaCO03): e2 = 5.0, conducting inclusions (Fe): o1 = 10 S/m, shape of
the inclusions: spherical (u = 1/6), ¢ ® o measured data at 9.6 GHz. (I'z:
normalized with respect to power transmission coefficient corresponding to
the sample being a totally dielectric (host) medium.)

by @ over the limits A4, B, C, and D can therefore be decided by the
Langevin-Debye theory of dipole polarization. Depicting D as the
upper (saturation) limit corresponding to (1 — I'r) — 1, then it is
determined by an order parameter 4u/2. The lower (antisaturation)
limit corresponds to A with (1 — I'z7) — 0 and has a value 0(u/2).
Further, 6,.x in Fig. 1 is the extreme limit of # beyond which the
mixture is metal-like. At this value of Omax, ' — 0. The arithmetic
mean of § = 0 and 9 = 1 statistically predicts fmax as equal to the
mean value of these extreme (0 and 1), namely, 0.5. Further, from the
considerations of Langevin dipole theory [13], the order parameter u
for spherical particulates is taken as 1/6.

TII. EXPERIMENTAL STUDY

Microwave power transmission coefficient (I'r) versus volume
fraction (6) of conducting inclusions was measured for a test material
constituted of commercial grade, finely divided iron particles of
6-9 um sizes (€ Xo, Ao = free-space wavelength) dispersed. in
a dielectric (CaCOs) host material. Several samples were made
by changing the volume fractions of iron from 0.01- 0.6. In each
case, the sample was a pellet (compressed through 6 tons with a
pelletizing compressor) of diameter 28.6 mm and thickness (d) 4.0
mm. The sample was placed in a corresponding circular window cut
out of a metal screen of about 20 x 20 cm. A simple transmitting
and receiving horn arrangement with relevant microwave plumbing-
(Fig. 2) was used to measure the insertion loss offered by each
sample (mounted on the metal screen) and interposed between
the horns. The transmitter horn aperture size was 2.8 x 2.8 cm
and that of the receiving horn was 6 x 5 cm. Denoting the horn
aperture dimensions as D X D, the sample was located in the
interspace between the horns at a spacing from each of the horn
aperture(s) above wD?/Xo (where Ao is the free-space wavelength).
This spacing approximately enables a plane-wave excitation of the
sample. The power transmission coefficient was ascertained at an X -
band frequency (9.6 GHz) by measuring the relative power received
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Fig. 2. Measurement of power transmission coefficient of the test samples at
X -band frequencies. A: X-band microwave source. B: Isolator. C: Attenuator.
D: Frequency meter. E: Slide-screw tuner. F: Horn antenna. G: Test composite.
H: Diode detector. I: SWR meter.

with the apertured screen interposed and with the aperture on the
screen filled with the test sample. The power levels were set such
that the detector at the receiving end operates in the square-law
regime. The detected signal was measured with an HP415E SWR
meter on an expanded decibel scale, as well as being monitored for
comparison on a voltage scale at the output of a tuned linear amplifier.
(The transmitted microwave signal was pulse-modulated at 1000
Hz). Measurements repeated on each sample four—five times yielded
consistent results with a deviation of less than +5%. With the plane-
wave excitation, it could be anticipated that the finite-sized aperture
may lead to edge diffraction and introduce corresponding errors in
the transmission measurements carried out. Since the measurements
involved were relative, cancellation of such errors were presumed.
The measurements with the pyramidal horns as described earlier were
repeated by replacing the transmitter horn with a focused microwave
Gaussian-beam launching arrangement as described in [17] by one
of the authors. The corresponding measured results on the insertion
loss differed from those pertinent to plane wave excitation only to a
maximum extent of +3%. The spot size of the beam at the sample
was approximately 2.5 cm when the sample was placed at 6 ¢cm in
front of the spherical lens during the measurements.

IV. RESULTS AND DISCUSSION

Depicted in Fig. 1 are the average of measured data (with the spread
about the mean value indicated by the error bars) on I'r versus 6.
For the material constants of iron and CaCOs as indicated in Fig. 1,
the calculated results on 'z via (4a) and (4b) are also shown in Fig.
1, along with the transition regions.

Considering the results presented, it can be observed that the
theoretical predictions are comparable to the experimental results
confirming the algorithmic approach pursued for regions I and IIL
For region II, the experimental data are within the stochastic bounds
of transition with the limits posed by 4, B, C, and D.

The present formulations, with the limited approximations, have no
empirical parameters. Material constants, order parameter(s), volume
fraction, and frequency solely decide the algorithmic representation(s)
of I'p. .

The results of the present study refer only to spherical particles
dispersed with isotropic randomness. If the particulates have an
eccentricity e s 0 and/or the particulate dispersion has an orderly tex-
ture, the order parameter u = 1/2[L(e)/e] will change accordingly
[13]. Here, L(z) represents the Langevin function as detailed in [13].
The values of I'r versus ¢ in the transitional regime for nonspherical
particles and/or anisotropic dispersions will still be confined to the
bounding limits of ABC D, except that such values will approach
towards the edges of ABC D, namely, AB or BD in Fig. 1. The
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choice of the edge will depend on the extreme parallel or antiparallel
anisotropicity of the particulate arrangement and/or the fiber-like
or disk-like particulate shape as dictated by the limiting values
of particle-shape eccentricity. Relevant theoretical and experimental
studies are in progress.
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